(Contd.)

B.Sc. (Part-I) (Semester-I) Examination **MATHEMATICS**

(Algebra & Trigonometry)

			Pap	er—	·I	
Tin	ne :]	Three	e Hours]			[Maximum Marks: 60
	Not	te :	-(1) Question ONE is compulso	ory. A	attempt once.	
			(2) Attempt ONE question from	m ea	ch Unit.	
1.	Cho	ose	the correct alternative :-			
	(1)	Wh	ich one of the following statemen	nts is	true :—	· 10
		(a)	$cosh(x + iy) = coshx \cdot cosy + isi$	nhx·s	siny	
		(b)	cosh(x + iy) = cosx cosy + isin	x sin	у	
		(c)	$\cosh (x + iy) = \cosh x + \cos y -$	isinl	nx·siny	' ' ·
		(d)	cosh(x + iy) = coshx siny + isin	hx c	osy	
	(2)	Wh	at is the value of sinh-1x:			
			$\log\left[x+\sqrt{x^2+1}\right]$	(b)	$\log \left[x + \sqrt{x^2 - 1} \right]$	
		(c)	$\log\left[x+\sqrt{1-x^2}\right]$	(d)	None of these	
	(3)	The	e value of $4 \tan^{-1} \frac{1}{5} - \tan^{-1} \frac{1}{70} + \tan^{-1} \frac{1}{1}$	-ı <u>1</u>	is	i e
		(a)	π/2	(b)	π/4	
		(c)	π/3	(d)	π	
	(4)	Sun	of the series $x - \frac{x^2}{2} + \frac{x^3}{3} - \dots + \frac{x^3}{3} - \dots$	(-1) ⁿ	$-i \frac{x^n}{n} + \dots; -1 < x <$	1 is denoted by
		(a)	log(1 + x)	(b)	sinhx	
		(c)	coshx	(d)	e ^x	
	(5)	If q	i = 2 + 2i - j + 4k then the norm	of q	is	
		• 6	-5	(b)		
			1/5		None of these	
	(6)		e inverse of unit quaternion is its			18
					Purely real	
	(7)	-37	Complex conjugate		None of these $f(x) = 0$ then it	a another root is
	(7)		$\alpha + i\beta$ be the root of quadratic points			s another root is
		(a)	$\alpha - i\beta$	(b)	None of these	
	(8)	. 3. 5	α , β , γ are the roots of the equation	50 (5)) then $\Sigma \alpha$ is
		(a)	<u>q</u>	(b)	$-\frac{q}{p}$	25
		(/	p	(-)	p	
		(c)	<u>r</u>	(d)	<u>s</u>	

1

YBC-15193

	(9)	If A and B are the non-signular matrices of order n then	
		(a) $(AB)^{-1} = AB$ (b) $(AB)^{-1} = \overline{A}^{1} \cdot \overline{B}^{1}$	
		(c) $(AB)^{-1} = \overline{B}^{1} \cdot \overline{A}^{1}$ (b) None of these	
	(10)	'Every square matrix satisfies its own characteristics equation' is the statement	of
		(a) Lagrange's MVT (b) De-Moivre's theorem	
		(c) Cayley-Hamilton theorem (d) Cauchy's MVT UNIT—I	
2.	(a)	Prove that $\frac{1+\sin\theta+i\cos\theta}{1+\sin\theta-i\cos\theta}=\sin\theta+i\cos\theta.$	
	,	Hence prove that $\left(1+\sin\frac{\pi}{5}+i\cos\frac{\pi}{5}\right)+i\left((1+\sin\frac{\pi}{5}-i\cos\frac{\pi}{5}\right)=0.$	5
	(b)	If $\sin(\alpha + i\beta) = x + iy$ then prove that $\frac{x^2}{\cosh^2 \beta} + \frac{y^2}{\sinh^2 \beta} = 1$ and $\frac{x^2}{\sin^2 \alpha} - \frac{y^2}{\cos^2 \alpha} = 1$	5
3.	(p)	Prove that one of the value of:	
		$(\cos\theta + i\sin\theta)^n$ is $(\cos n\theta + i\sin n\theta)$; when n is negative integer.	5
	(q)	Separate real and imaginary parts of tan (x + iy). UNIT—II	5
4.	(a)	Find the Sum of the series :	
		$C = 1 + e^{\sin x} \cdot \cos(\cos x) + \frac{1}{2!} e^{2\sin x} \cdot \cos(2\cos x) + e^{3\sin x} \cdot \frac{1}{3!} \cos(3\cos x) + \dots$	5
	(b)	Prove that $4 \tan^{-1} \frac{1}{5} - \tan^{-1} \frac{1}{70} + \tan^{-1} \frac{1}{99} = \frac{\pi}{4}$.	5
5.	(p)	Find the sum of the series $\sinh x + \frac{1}{2!} \sinh 2x + \frac{1}{3!} \sinh 3x + \dots$	5
	(q)	If $-\frac{\pi}{4} \le x \le \frac{\pi}{4}$ then prove that	
		$x = \tan x - \frac{1}{3} \tan^3 x + \frac{1}{5} \tan^5 x + \dots + (-1)^{n-1} \frac{1}{2n-1} \tan^{2n-1} x + \dots$	5
		UNIT—III	
6.	(a)	Prove that for p, $q \in H$, $N(pq) = N(p) N(q)$ and $N(q^*) = N(q)$.	5
	(b)	For the quaternion $q = \cos \frac{\pi}{3} + i \sin \frac{\pi}{3}$ and the input vector $v = i$, compute the output	put
		vector w under the action of the operators L_q and L_{q^*} .	5
7.	(p)	Show that the quaternian product need not be commutative.	5
	(q)	For any p, $q \in H$, show that $pq = qp$ if and only if p and q are parallel.	5

2

(Contd.)

YBC-15193

UNIT-IV

- 8. (a) Find the roots of the equation, $8x^3 + 18x^2 27x 27 = 0$, if these roots are in geometric progression.
 - (b) State Descartes rule of sign. Find the nature of the roots of the equation $2x^7 x^4 + 4x^3 5 = 0$.
- 9. (p) Prove that in an equation with real coefficients complex roots occur in pairs. 5
 - (q) Solve the equation $x^4 2x^3 22x^2 + 62x 15 = 0$; given that $2\sqrt{3}$ is one of the root.

UNIT-V

- 10. (a) Show that if λ is the eigen value of a nonsingular matrix A then λ^{l} is the eigen value of A^{l} .
 - (b) Find the eigen values and the corresponding eigen vector for smallest eigen value of

the matrix
$$A = \begin{bmatrix} 8 & -8 & -2 \\ 4 & -3 & -2 \\ 3 & -4 & 1 \end{bmatrix}$$
.

- 11. (p) Show that the eigen values of any square matrix A and A' are same.
 - (q) Reduce to canonical form and find the rank of the matrix $A = \begin{bmatrix} 1 & 1 & -1 & 1 \\ 1 & -1 & 2 & -1 \\ 3 & 1 & 0 & 1 \end{bmatrix}$. 5